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The collapse under pressure of the antiferromagnetic ground state of the

potassium±rubidium electro-sodalite is studied using the linearized augmented

plane wave with local orbitals method. Special considerations needed for setting

up this basis for systems such as the electro-sodalites are discussed. It is

demonstrated that the magnetism collapses at a unit-cell volume similar to

potassium electro-sodalite and rubidium electro-sodalite. A critical pressure of

8 GPa is predicted. The mechanism behind the collapse is a mixing of the

F-center states with the highly diffuse unoccupied p states of the alkali atoms.

1. Introduction

The use of porous framework compounds to encapsulate

nanoscale atomic clusters gives several possibilities to produce

novel materials. One example is the stabilization of magnetic

nanoclusters inside the cavities of zeolites. The present study

concerns the alkali electro-sodalites (AES). The AES are

based on the sodalite framework which is the simplest of the

zeolite structures and can be described as a body-centered

cubic (b.c.c.) arrangement of � cages. The sodalite studied

here has two cages in each unit cell and consists of corner-

sharing and regularly alternating SiO4 and AlO4 tetrahedra.

Three alkali atoms (A) are needed inside each cage to balance

the formal negative charge on the AlO4 tetrahedra, leading to

a unit-cell composition A6�
6 (SiO2)6(AlOÿ2 )6. There are four

symmetry-equivalent alkali positions inside each cage, three of

which are occupied in the basic sodalite, and the vacant site

can be doped with one extra alkali atom. The extra alkali atom

can be envisioned as contributing a cation to ®ll the vacant site

and an electron. Thereby a paramagnetic A4�
4 eÿ cluster is

formed inside each cage and, if every cage is doped, a b.c.c.

array of paramagnetic clusters will be formed. This was ®rst

accomplished by Srdanov et al. (1992), who exposed a sodalite

containing three Na ions per cage to sodium vapor. This

resulted in a gradual color change from blue through purple to

black eventually. The color change was ascribed to the

formation of F centers.1

Two AES have been published, namely the sodium electro-

sodalite [SES, Na8�
8 e2ÿ

2 (SiO2)6(AlOÿ2 )6] and the potassium

electro-sodalite [PES, K8�
8 e2ÿ

2 (SiO2)6(AlOÿ2 )6]. When cooled

below TN = 48�2 K (SES) (Srdanov et al., 1998) and TN =

71�2 K (PES) (Damjanovic et al., 2000), they undergo phase

transitions and the b.c.c. sublattice of unpaired electrons order

antiferromagnetically. At ambient pressure, the electronic

structures of SES and PES are quite similar (Madsen, Iversen

et al., 2001): the bands belonging to the sodalite framework

have a gap of approximately 5 eVand the F centers form a pair

of narrow bonding±antibonding bands, approximately 1 eV

broad, 1 eV below the sodalite conduction bands. The

magnetism can be rationalized as the potential barrier of the

negatively charged sodalite framework causing the F-center

bands to narrow (Monnier et al., 1994) and the F-center bands

can be viewed as a half-®lled band leading to the anti-

ferromagnetic (AFM) ground state (Sankey et al., 1998;

Madsen, Iversen et al., 2001).

The AES have shown a surprising behavior under pressure

(Mizoguchi et al., 2003; Madsen & Blaha, 2003). An experi-

mental study of SES and PES under pressures up to 2.2 GPa

reported two interesting ®ndings. First of all, the ordering

temperature (TN) for both compounds decreases with

increasing pressure (Mizoguchi et al., 2003), which corre-

sponds to a narrowing of the bands under pressure [using a

simple one-band model of the magnetism (Sankey et al., 1998;

Madsen, Iversen et al., 2001)]. Furthermore, the decrease in

ordering temperature is much more pronounced in SES than

in PES (Mizoguchi et al., 2003). Although one would not

expect a narrowing of bands with increasing pressure, both

effects were also observed in a theoretical study (Madsen &

Blaha, 2003). This study also found a substantial difference in

critical pressure (CP) between SES (127 GPa) and PES

(20 GPa). The theoretical study also included a hypothetical

rubidium electro-sodalite [RbES, Rb8�
8 e2ÿ

2 (SiO2)6(AlOÿ2 )6],

which was found to have a CP of 13 GPa and to be elec-

tronically very similar to PES (Madsen & Blaha, 2003)

Recently, a mixed sodalite containing a Rb4�
4 eÿ cluster in

every second cage and a K4�
4 eÿ cluster in every other [PRbES,

K4�
4 eÿRb4�

4 eÿ(SiO2)6(AlOÿ2 )6] has been synthesized (Iversen

& Srdanov, 2004). The inclusion of both K and Rb breaks the

symmetry between neighboring cages. The AFM ordering of

spins therefore no longer lowers the symmetry and it would be

1 An F center (from German Farbzentrum) is an electron bound to a negative-
ion vacancy. In this respect, the F centers in Na8�

8 e2ÿ
2 (SiO2)6(AlOÿ2 )6 (SES)

can be viewed as electrons occupying the positions of the chlorine vacancies of
the well known Na8�

8 Cl2ÿ
2 (SiO2)6(AlOÿ2 )6 sodalite in the Na4�

4 eÿ clusters.



interesting to see if the simple explanation of the AFM order

(Sankey et al., 1998; Madsen, Iversen et al., 2001) still holds.

Furthermore, it would be interesting to see if PRbES has a low

CP like PES and RbES.

2. Computational approach

The computational approach employed in the present study is

based on density functional theory (DFT) (see e.g. Baerends

& Gritsenko, 1997, and references therein). The WIEN2k code

(Blaha et al., 2001), which expands the eigenfunctions of the

Kohn±Sham equations using the linearized augmented plane

wave (LAPW) (Andersen, 1975) method, is used.

2.1. APW-based methods

In APW schemes, the unit cell is divided into two regions:

(i) the atomic sphere region, which consists of spheres

centered at the atomic positions, inside which the basis func-

tions, �kn
, satisfy the atomic SchroÈ dinger equation; and (ii) the

interstitial region, I, where the �kn
consist of PWs. A basis

function can thus be written as

�kn
�r� �

P
t;lm a

tkn

lm ut
l�r0; "�Ylm�r̂0� r0<Rt


ÿ1=2 exp�ikn � r� r 2 I,

�
�1�

where t refers to a given atomic sphere and r0 � rÿ rt, where

rt is the atomic position within the unit cell. 
 is the unit-cell

volume, Rt the radius of the atomic sphere, k is a wavevector in

the irreducible Brillouin zone, K a reciprocal-lattice vector

and kn � k� K. ut
l is the numerical solution to the radial

SchroÈ dinger equation at the energy ". The coef®cients a
tkn

lm are

chosen such that the atomic functions match the corre-

sponding PW at the sphere boundary. An example of an APW

basis function is shown in Fig. 1.

The main problem of an APW basis set is that inside the

spheres a Kohn±Sham orbital  k;i can only be accurately

described if " is equal to the eigenenergy of  k;i. This problem

was solved by augmenting the basis set with radial functions

that are the energy derivative of ul, _ul, leading to the LAPW

method (Andersen, 1975). The Taylor expansion of ul�r; "�
around a given energy "l,

ul�r; "� � u1l�r; "l� � �"ÿ "l� _ul�r; "l� �O��"ÿ "1�2�
shows that the basis set thereby obtains a ¯exibility suf®cient

to describe radial functions in an energy range around a

chosen linearization energy, "l. The LAPW method has been

further improved by introducing local orbitals (LOs) to

augment the LAPW basis set for certain l values (Singh, 1991)

and in its newest, and computationally most ef®cient, version

the linearizing terms are also included in LOs (SjoÈ stedt et al.,

2000; Madsen, Blaha et al., 2001). As will be discussed later,

the "t
l values can be chosen automatically during the self-

consistent procedure. A useful quantity for the chemical

interpretation of the calculated wavefunction is the partial

l-like charge. In the APW method, these partial charges are

often called qt
l (Blaha & Schwarz, 1983), where t refers to a

given atomic sphere. They can be de®ned as

qt
l � �1=N�P

m

P
k;i

h k;ijYt
lmihYt

lmj k;ii: �2�

Similarly to the density of states (DOS), one can de®ne an

energy-projected qt
l as

qt
l�"� � �1=N�P

m

P
k;i

h k;ijYt
lmihYt

lmj k;ii��"ÿ "k;i�=d": �3�
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Figure 1
Example of the real part of an APW basis function. The APW is plotted
in the (001) plane of b.c.c. Fe and corresponds to K � �1; 1; 0�2�=a and
k � �1=4; 1=4; 0�2�=a. The blue regions correspond to the atomic spheres
and the red to the interstitial. The small plots below show different
components of the basis function inside the sphere. The components not
shown are either zero in this plane or simple mirror images of the ones
shown.

Figure 2
Total energy per unit cell of PRbES as a function of unit-cell volume.



The results of an LAPW calculation are relatively insensitive

to the choice of linearization energies but "t
l should be chosen

to lie in the energy range where the states have a large

contribution of l-like character from atom t. A non-standard

option implemented in the WIEN2k code sets the linearization

energies in each self-consistent loop at the weighted means of

qt
l�"�, "l � �

P
"qt

l�"��=qt
l. The advantage of this procedure for

setting the linearization energies, especially when working on

systems with unusual electronic structures such as the AES,

will be discussed in the following sections.

2.2. Computational details

For the present study, sphere radii of 2.0, 2.0, 1.7, 1.55 and

1.5 a.u. were used for K, Rb, Al, Si and O, respectively.

Calculations were performed at a plane-wave cut-off de®ned

by min�Rt�max�kn� � 5:5 corresponding to approximately

3850 APWs in the smallest unit cell and 4900 APWs in the

largest. The exchange and correlation potentials of DFT were

calculated using the generalized gradient approximation

(Perdew et al., 1996).

When the symmetry between the two cages in the unit cell is

broken, the space-group symmetry is lowered from the P�43n

space group (of SES and PES) to the P23 subgroup (of

PRbES), which doubles the number of free positional par-

ameters. No experimental information is available on the

structure of PRbES, but the earlier calculated structures for

SES and PES gave bond distances deviating only 1% from the

experimental (Madsen & Blaha, 2003). We have therefore also

optimized the structure of PRbES by varying the unit-cell

volume and at each volume optimizing the free positional

parameters using the analytical force expression for the

LAPW basis set (Yu et al., 1991; Madsen, Blaha et al., 2001).

The energy versus volume curve is shown in Fig. 2. The

equilibrium volume (V0) and bulk moduli (B0 and B00), Fig. 2,

were calculated by ®tting an equation of state (EOS)

(Alchagirov et al., 2001) to the calculated energies.

3. Results and discussion

3.1. Geometry and volume optimization

Table 1 shows that the calculated unit-cell volume of

PRbES lies between that of PES and RbES. It is worth noting

that, although Si and Al have one free positional parameter in

the P23 space group, they hardly move from the high-

symmetry positions of the P�43n space group. The lower

symmetry also means that there are two non-equivalent
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Table 1
Calculated cell axes and bond distances at ambient pressure for PRbES .

For comparison, the experimental (Madsen et al., 1999; Madsen, Iversen et al.,
2001) and calculated (Madsen & Blaha, 2003) bond distances are also given for
SES, PES, RbES. The unit for all entries is AÊ . The optimized fractional
coordinates (atom, x, y, z) in the P23 space group are: (Si, 0.2498, 0, 1/4),
(Al, 0.2497, 0.5, 0), (O1, 0.1447, 0.4796, 0.1540), (O2, 0.9816, 0.3553, 0.3461),
(K, 0.1837, 0.1837, 0.1837), (Rb, 0.6752, 0.3248, 0.3248).

PRbES
SES PES

RbES
(calc.) (exp.) (calc.) (exp.) (calc.) (calc.)

a 9.38 8.86 8.88 9.25 9.33 9.43
SiÐO 1.64 1.62 1.65 1.64 1.64 1.64
AlÐO 1.76 1.76 1.76 1.74 1.76 1.76
OÐNa 2.33 2.32
OÐK 2.81 2.72 2.74
OÐRb 2.96 2.91

Figure 3
Band structure and DOS in NM-PRbES. The symbols label special points
within the ®rst Brillouin zone. ÿ: k � �0; 0; 0�, X: k � �1; 0; 0��=a, K:
k � �1; 1; 0��=a, L: k � �1; 1; 1��=a. Red indicates the spin-up bands
situated mainly in the cages containing Rb atoms. Blue indicates the spin-
down bands situated mainly in the cages containing K atoms.

Figure 4
Atom projected DOS, qt�"�. The red line corresponds to Si, green to Al,
blue to O, purple to K and cyan to Rb atoms. The linearization energies
are marked to the right in corresponding colors.



O-atom positions. The four SiÐO distances are therefore no

longer forced to be equal, but in fact turn out to differ by only

approximately 0.001 AÊ . In the P�43n space group, the faces of

the SiÐO and AlÐO tetrahedra have two short edges and one

long. In the P23 space group, all three edge lengths can be

different, which does lead to a small distortion of approxi-

mately 0.01 AÊ of the short edges.

3.2. Ambient pressure electronic structure

Like the earlier studied AES, an AFM ordering of spins in

PRbES is found to be the most stable energetically at ambient

pressure, (Fig. 5a). The band structure and DOS of AFM-

PRbES are shown in Fig. 3. The band structure is similar to the

ones found for the other AES, with a 5 eV gap between the

bonding and antibonding framework states and two F-center

bands, approximately 1 eV broad, at the Fermi level. As the

two cages in the unit cell are not symmetry equivalent, the two

spins are no longer exactly the same. However, Fig. 3 shows

that despite the broken symmetry the two bands are still very

similar, in accordance with the earlier observation that PES

and PRbES are electronically very similar (Madsen & Blaha,

2003).

Fig. 3 illustrates the need for special care when setting the

linearization energies for the AES. Usually, setting the lin-

earization energies of the s and p states 1.5±2.5 eV below the

Fermi energy will place them in the desired energy interval.

However, in the AES such a procedure would mean that the

linearization energies would be set in an energy range where

there are no states (Fig. 3). Instead, the linearization energies

can be set at the weighted mean of qt
l�"�, as described in the

previous section. The qt�"� for the valence framework bands

and the resulting linearization energies are shown in Fig. 4.

Not surprisingly, the valence bands belong mainly to the O

atoms but with some covalent contribution from the Si and Al

atoms. The alkali atoms are mainly ionically bound and hardly

contribute to these bands. The F-center bands are not shown

in Fig. 4 because they are primarily situated in the interstitial

spaces and therefore only have a very small contribution from

the atomic spheres.

Acta Cryst. (2004). A60, 450±454 Georg K. H. Madsen � Metal±insulator phase transitions 453

research papers

Figure 5
(a) Total energy difference between the nonmagnetic and antiferromagnetic states of PRbES. The optimized unit-cell volume is marked with an arrow.
(b) Band width of F-center state (open points) and DOS (EF) (®lled points) for the NM state. (c) DOS at three volumes. The zero point is set at the
energy of the potassium 3p state. The colors correspond to the marked points in (a). (d) Isosurface plots of the electron density from the occupied
F-center states at three different volumes. The isosurface is set at 0.006 e AÊ ÿ3.



3.3. Pressure-induced phase transition

Fig. 5(a) shows the difference in energy between the non-

magnetic (NM) and the AFM state. When the unit-cell volume

is compressed to around 4600 a.u.3, the magnetism collapses

and the NM and AFM states become equal in energy. Using

the calculated EOS, Fig. 2, a unit-cell volume of 4600 a.u.3

corresponds to a pressure of 8.2 GPa. In addition, Fig. 5(b)

shows that the F-center bands initially narrow slightly under

pressure in accordance with both the experimental and the-

oretical results for PES and RbES (Madsen & Blaha, 2003).

When the unit cell is further compressed, the bands broaden

again, which eventually leads to the collapse of magnetism.

The mechanism behind the collapse of magnetism was

discussed in an earlier paper (Madsen & Blaha, 2003). The

collapse was found to coincide with the hybridization of the

F-center bands with the unoccupied p states of the alkali

atoms. This observation was used to explain the low CP for

PES and RbES. While the 3p states of sodium are high in

energy compared to the occupied states (situated 2.5 Ry above

the 2p semi-core states), the 4p=5p states in atomic potassium/

rubidium are much lower, lying 1.4 Ry=1.2 Ry above the

3p=4p semi-core states. In accordance, the Fermi level, when

the magnetism collapses, is found 2.3 Ry=1.3 Ry=1.1 Ry above

the Na 2p=K 3p=Rb 4p semi-core states in SES=PES=RbES,

respectively. Fig. 5(c) shows that a similar mechanism can be

used for PRbES. As the magnetism collapses and the F-center

states broaden due to hybridization, the Fermi energy rises

1 Ry above the Rb 4p states and 1.1 Ry above the K 3p states.

The mixing of the F-center states with the diffuse p states

also changes the charge density from the states at the Fermi

level, Fig. 5(d). At ambient pressure, this density is close to

spherical and situated at the center of the alkali tetrahedra. As

pressure is applied, the electrons are redistributed towards the

faces of the alkali tetrahedra and the F center is split into four

maxima approximately midway between the Na atoms in two

neighboring cages, Fig. 5(d).

4. Conclusions

It has been predicted that the magnetism in PRbES will

collapse at a similar volume to PES and RbES and that a

similar mechanism seems to apply. Furthermore, it has been

shown that the LAPW basis as implemented in WIEN2k

(Blaha et al., 2001) forms a suitable basis for such compounds.

As the basis-set quality is essentially controlled by only one

parameter, the plane-wave cut-off, it is a simple task to

systematically improve the basis set until convergence is

reached. This implies that one does not need to have

preconceived ideas about the `chemistry' of the system to

construct an ef®cient basis. The advantage is clearly seen by a

comparison with our original study of the electron density in

SES (Madsen et al., 1999). To get the F-center state, the

original atom-centered Gaussian basis set had to be

augmented either by diffuse p functions on the Na atoms or by

a ¯oating Gaussian at the center of the cage. This procedure

was justi®ed by the large drop in total energy, but would not

have been possible without speci®cally looking for the

F-center state.
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